Package: RMBC 0.1.0

RMBC: Robust Model Based Clustering

A robust clustering algorithm (Model-Based) similar to Expectation Maximization for finite mixture normal distributions is implemented, its main advantage is that the estimator is resistant to outliers, that means that results of parameter estimation are still correct when there are atypical values in the sample (see Gonzalez, Maronna, Yohai and Zamar (2021) <https://arxiv.org/abs/2102.06851>).

Authors:Juan Domingo Gonzalez [cre, aut], Victor J. Yohai [aut], Ruben H. Zamar [aut] Ricardo Maronna [aut]

RMBC_0.1.0.tar.gz
RMBC_0.1.0.zip(r-4.5)RMBC_0.1.0.zip(r-4.4)RMBC_0.1.0.zip(r-4.3)
RMBC_0.1.0.tgz(r-4.4-any)RMBC_0.1.0.tgz(r-4.3-any)
RMBC_0.1.0.tar.gz(r-4.5-noble)RMBC_0.1.0.tar.gz(r-4.4-noble)
RMBC_0.1.0.tgz(r-4.4-emscripten)RMBC_0.1.0.tgz(r-4.3-emscripten)
RMBC.pdf |RMBC.html
RMBC/json (API)

# Install 'RMBC' in R:
install.packages('RMBC', repos = c('https://jdgonzalezwork.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jdgonzalezwork/rmbc/issues

Datasets:

On CRAN:

2.70 score 184 downloads 3 exports 46 dependencies

Last updated 4 years agofrom:4fe44a6e77. Checks:3 OK, 4 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 20 2025
R-4.5-winNOTEJan 20 2025
R-4.5-linuxNOTEJan 20 2025
R-4.4-winNOTEJan 20 2025
R-4.4-macNOTEJan 20 2025
R-4.3-winOKJan 20 2025
R-4.3-macOKJan 20 2025

Exports:is_in_grquad_discRMBC

Dependencies:cellWiseclicolorspaceDEoptimRfansifarverggplot2gluegridExtraGSEgtableisobandktaucenterslabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmepcaPPpillarpkgconfigplyrR6RColorBrewerRcppRcppArmadilloreshape2rlangrobustbaserrcovscalesshapestringistringrsvdtibbleutf8vctrsviridisLitewithr