Package: RMBC 0.1.0

RMBC: Robust Model Based Clustering

A robust clustering algorithm (Model-Based) similar to Expectation Maximization for finite mixture normal distributions is implemented, its main advantage is that the estimator is resistant to outliers, that means that results of parameter estimation are still correct when there are atypical values in the sample (see Gonzalez, Maronna, Yohai and Zamar (2021) <https://arxiv.org/abs/2102.06851>).

Authors:Juan Domingo Gonzalez [cre, aut], Victor J. Yohai [aut], Ruben H. Zamar [aut] Ricardo Maronna [aut]

RMBC_0.1.0.tar.gz
RMBC_0.1.0.zip(r-4.5)RMBC_0.1.0.zip(r-4.4)RMBC_0.1.0.zip(r-4.3)
RMBC_0.1.0.tgz(r-4.4-any)RMBC_0.1.0.tgz(r-4.3-any)
RMBC_0.1.0.tar.gz(r-4.5-noble)RMBC_0.1.0.tar.gz(r-4.4-noble)
RMBC_0.1.0.tgz(r-4.4-emscripten)RMBC_0.1.0.tgz(r-4.3-emscripten)
RMBC.pdf |RMBC.html
RMBC/json (API)

# Install 'RMBC' in R:
install.packages('RMBC', repos = c('https://jdgonzalezwork.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jdgonzalezwork/rmbc/issues

Datasets:

On CRAN:

2.70 score 183 downloads 3 exports 46 dependencies

Last updated 4 years agofrom:4fe44a6e77. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winNOTENov 21 2024
R-4.5-linuxNOTENov 21 2024
R-4.4-winNOTENov 21 2024
R-4.4-macNOTENov 21 2024
R-4.3-winOKNov 21 2024
R-4.3-macOKNov 21 2024

Exports:is_in_grquad_discRMBC

Dependencies:cellWiseclicolorspaceDEoptimRfansifarverggplot2gluegridExtraGSEgtableisobandktaucenterslabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmepcaPPpillarpkgconfigplyrR6RColorBrewerRcppRcppArmadilloreshape2rlangrobustbaserrcovscalesshapestringistringrsvdtibbleutf8vctrsviridisLitewithr